Normal cones to infinite intersections
نویسنده
چکیده
For sets given as finite intersections A = ⋂K k=1Ak the basic normal cone N(x̄;A) is given as ∑ kN(x̄;Ak), but such a result is not, in general, available for infinite intersections. A comparable characterization of N(x̄;A) is obtained here for a class of such infinite intersections.
منابع مشابه
Branched Coverings and Minimal Free Resolution for Infinite-dimensional Complex Spaces
We consider the vanishing problem for higher cohomology groups on certain infinite-dimensional complex spaces: good branched coverings of suitable projective spaces and subvarieties with a finite free resolution in a projective space P(V ) (e.g. complete intersections or cones over finitedimensional projective spaces). In the former case we obtain the vanishing result for H. In the latter case ...
متن کاملIntersection Theory Class 14
1. Where we are: Segre classes of vector bundles, and Segre classes of cones 1 1.1. Segre classes of cones 1 2. What the “functoriality of Segre classes of subschemes” buys us 2 2.1. The multiplicity of a variety along a subvariety 2 3. Deformation to the normal cone 3 3.1. The construction 3 4. Specialization to the normal cone 5 4.1. Gysin pullback for local complete intersections 6 4.2. Inte...
متن کاملConiveau 2 complete intersections and effective cones
The goal of this paper is first of all to propose a strategy to attack the generalized Hodge conjecture for coniveau 2 complete intersections, and secondly to state a conjecture concerning the cones of effective cycle classes in intermediate dimensions. Our main results show that the generalized Hodge conjecture for coniveau 2 complete intersections would follow from a particular case of this e...
متن کاملCanonical rational equivalence of intersections of divisors
We consider the operation of intersecting with a locally principal Cartier divisor (i.e., a Cartier divisor which is principal on some neighborhood of its support). We describe this operation explicitly on the level of cycles and rational equivalences and as a corollary obtain a formula for rational equivalence between intersections of two locally principal Cartier divisors. Such canonical rati...
متن کاملRepresentation of infinitely divisible distributions on cones
We investigate infinitely divisible distributions on cones in Fréchet spaces. We show that every infinitely divisible distribution concentrated on a normal cone has the regular Lévy–Khintchine representation if and only if the cone is regular. These results are relevant to the study of multidimensional subordination.
متن کامل